NATURAL RESOURCES CONSERVATION SERVICE MONTANA CONSERVATION PRACTICE STANDARD ### FILTER STRIP (ACRE) ### **CODE 393** ### **DEFINITION** A strip or area of herbaceous vegetation that removes contaminants from overland flow. #### **PURPOSE** - Reduce suspended solids and associated contaminants in runoff. - Reduce dissolved contaminant loadings in runoff. - Reduce suspended solids and associated contaminants in irrigation tailwater. ### CONDITIONS WHERE PRACTICE APPLIES Filter strips are established where environmentally-sensitive areas need to be protected from sediment, other suspended solids and dissolved contaminants in runoff. Filter strips applied by themselves may not eliminate runoff and their associated contaminants. Complimentary practices may need to be established where receiving waters need to be protected. #### **CRITERIA** ### General Criteria Applicable to All Purposes Overland flow entering the filter strip shall be uniform sheet flow. Concentrated flow shall be dispersed before it enters the filter strip. The maximum gradient along the leading edge (perpendicular to water flow) of the filter strip shall not exceed one-half of the up-and-down hill slope percent, immediately upslope from the filter strip, up to a maximum of 5%. Montana-listed noxious plants will not be established in the filter strip http://www.weedawareness.org/weed_list.html. Filter strips shall not be used as a travel lane for equipment or livestock. ### Additional Criteria to Reduce Suspended Solids and Associated Contaminants in Runoff The filter strip will be designed to have a 10-year life span, following the procedure in the Agronomy Technical Note No. 2 (Using RUSLE2 for the Design and Predicted Effectiveness of Vegetative Filter Strips (VFS) for Sediment), the sediment delivery in RUSLE2 to the upper edge of the filter strip and ratio of the filter strip flow length to the length of the flow path from the contributing area. (National Agronomy Technical No. 2 can be found at http://directives.sc.egov.usda.gov/, select Technical Notes, then Ecological Sciences, then Agronomy). The minimum flow length through the filter strip shall be 20 feet. The filter strip shall be located immediately downslope from the source area of contaminants. The drainage area above the filter strip shall have a minimum slope of 1%. **Vegetation.** The filter strip shall be established to permanent herbaceous vegetation. Species selected shall be: - able to withstand partial burial from sediment deposition and - tolerant of herbicides used on the area that contributes runoff to the filter strip. NRCS, MT October 2008 Conservation practice standards are reviewed periodically and updated if needed. To obtain the current version of this standard contact the Natural Resources Conservation Service. Species selected shall have stiff stems and a high stem density near the ground surface. Species selected for seeding or planting shall be suited to current site conditions and intended uses. Selected species will have the capacity to achieve adequate density and vigor within an appropriate period to stabilize the site sufficiently to permit suited uses with ordinary management activities. Species, rates of seeding or planting, minimum quality of planting stock, such as PLS or stem caliper, and method of establishment shall be specified before application based upon Plant Materials Technical Note Number MT-58, Seedbed Preparation and Seeding. Only viable, high quality seed or planting stock will be used. Bunchforming species are limited to 15% Pure Live Seed (PLS) of the mixture. Site preparation and seeding or planting shall be done at a time and in a manner that best ensures survival and growth of the selected species. What constitutes successful establishment, e.g. minimum percent ground/canopy cover, percent survival, stand density, etc. shall be specified before application. For Montana, successful establishment of a filter strip is 10 plants per square foot counted the first year of establishment. Planting dates shall be scheduled during periods when soil moisture is adequate for germination and/or establishment. The minimum seeding and stem density shall be equivalent to a high quality grass hay seeding rate for the climate area or the density of vegetation selected in RUSLE2 to determine trapping efficiency, whichever is the higher seeding rate. Where fast establishment of cover is important, annual ryegrass or spring-seeded small grain crops may be used to ensure adequate protection for the first year of establishment. With the exception of spring-seeded winter wheat, small grain crops shall be terminated prior to seed-head formation. ## Additional Criteria to Reduce Dissolved Contaminants in Runoff The criteria given in "Additional criteria to reduce suspended solids and associated contaminants in runoff" for location, drainage area and vegetation characteristics also apply to this purpose. NRCS, MT October 2008 The minimum flow length for this purpose shall be 30 feet. ### Additional Criteria to Reduce Suspended Solids and Associated Contaminants in Irrigation Tailwater Filter strip vegetation shall be a small grain or other suitable annual plant that has a high percentage of seed germination and low dormant seed count. The seeding rate shall be sufficient to ensure that the plant spacing does not exceed 3 inches. Filter strips shall be established early enough prior to the irrigation season so that the vegetation is mature enough to filter sediment from the first irrigation. The minimum flow length for this purpose shall be 20 feet. Where excess sediment builds up at the leading edge of the filter strip, removal is required to ensure sheet flow across the strip. Where furrow irrigation is utilized, the furrow will not extend through the filter strip, but will terminate at the leading edge of the strip where water will be allowed to flow as sheet-flow across the strip. With the exception of spring-seeded winter wheat, vegetation must be clipped or growing plant terminated prior to seed-head formation. ### **CONSIDERATIONS** **General.** Filter strip width (flow length) can be increased as necessary to accommodate harvest and maintenance equipment. Filters strips with the leading edge on the contour will function better than those with a gradient along the leading edge. Seeding rates that establish a higher stem density than the normal density for a high quality grass hay crop will be more effective in trapping and treating contaminants. Reducing Suspended Solids and Associated Contaminants in Runoff. Increasing the width of the filter strip beyond the minimum required will increase the potential for capturing contaminants in runoff. # Creating, Restoring or Enhancing Herbaceous Habitat for Wildlife and Beneficial Insects. Filter strips are often the only break in the monotony of intensively-cropped areas. The wildlife benefits of this herbaceous cover can be enhanced by: - Increasing the width beyond the minimum required, and planting this additional area to species that can provide food and cover for wildlife. This additional width should be added on the downslope side of the filter strip. - Adding herbaceous plant species to the filter strip seeding mix that are beneficial to wildlife and compatible for one of the listed purposes. Changing the seeding mix should not detract from the purpose for which the filter strip was established. ## Maintain or Enhance Watershed Functions and Values. Filter strips can: - enhance connectivity of corridors and noncultivated patches of vegetation within the watershed. - enhance the aesthetics of a watershed. - be strategically located to reduce runoff, and increase infiltration and ground water recharge throughout the watershed. **Air Quality.** Increasing the width of a filter strip beyond the minimum required will increase the potential for carbon sequestration. #### PLANS AND SPECIFICATIONS Plans and specifications shall be prepared for each field site where a filter strip will be installed. A plan includes information about the location, construction sequence, vegetation establishment, and management and maintenance requirements. As a minimum, the plans shall include: - a) Length, width (flow path), and slope of the filter strip to accomplish the planned purpose (width refers to flow length through the filter strip). - b) Species selection and seeding or sprigging rates to accomplish the planned purpose. - Planting dates, care and handling of the seed to ensure that planted materials have an acceptable rate of survival. - d) A statement that only viable, high quality and regionally adapted seed will be used. - e) Site preparation sufficient to establish and grow selected species. - f) The Montana Filter Strip Specification and job sheet are required and must be completed and placed in the field office case file with a copy provided to the producer. ### **OPERATION AND MAINTENANCE** For the purposes of filtering contaminants, permanent filter strip vegetative plantings shall be harvested as appropriate to encourage dense growth, maintain an upright growth habit and remove nutrients and other contaminants that are contained in the plant tissue. Control undesired weed species, especially statelisted noxious weeds. If prescribed burning is used to manage and maintain the filter strip, an approved burn plan must be developed. To best serve wildlife, the filter strip should not be burned or mowed during the nesting season. Inspect the filter strip after storm events and repair any gullies that have formed, remove unevenly deposited sediment accumulation that will disrupt sheet flow, reseed disturbed areas and take other measures to prevent concentrated flow through the filter strip. Apply supplemental nutrients as needed to maintain the desired species composition and stand density of the filter strip. Periodically re-grade and re-establish the filter strip area when sediment deposition at the filter strip-field interface jeopardizes its function. Reestablish the filter strip vegetation in these regraded areas, if needed. If grazing is used to harvest vegetation from the filter strip, the grazing plan must insure that the integrity and function of the filter strip is not adversely affected. ### **REFERENCES** Dillaha, T.A., J.H. Sherrard, and D. Lee. 1986. Long-Term Effectiveness and Maintenance of Vegetative Filter Strips. VPI-VWRRC Bulletin 153. Dillaha, T.A., and J.C. Hayes. 1991. A Procedure for the Design of Vegetative Filter Strips: Final Report Prepared for U.S. Soil Conservation Service. Foster, G.R. Revised Universal Soil Loss Equation, Version 2 (RUSLE2) Science Documentation (In Draft). USDA-ARS, Washington, DC. 2005. Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool, and D.C. Yoder, coordinators. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture. Agriculture Handbook 703. R.A. Fasching and J.W. Bauder. <u>Non-point Source</u> <u>Pollution Control Using Dryland Vegetative Filter</u> <u>Strips.</u> Montana State University, May 2000. <u>Fertilizer Guidelines for Montana</u>. Montana State University, Extension Service Bulletin EB 161.